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Rating Through the Cycle

Ashley Evans®

Abstract

Changing credit rating migration intensities over the business cycle has been
the subject of numerous studies (for example, Nickell et al. (2000) and Bangia
et al. (2002)). Standard & Poor’s, however, asserts that credit ratings are
based on through the cycle measures; meaning that changes in the default
risk should affect an issuer’s credit rating only if these changes are persistent.
Short-term fluctuations in default risk, such as a recession or uncharacteristic
asset write-offs, should not affect the credit rating. Through an adaptation of
a runs test and smoothed intensity estimates, we are able to demonstrate that
the baseline downgrade intensity of Evans (2007) is not constant, and thus
reject the policy of rating through the cycle.

The rejection of rating through the cycle has asset management ramifications.
A consequence of non-constant baseline downgrade intensities is that there are
systemic risks of credit re-evaluations that cannot be neutralised by large diver-
sified debt portfolios. Where there is a strong relationship between debt value
and credit rating, the sustenance of portfolios because of finite debt maturity
means that industry- or economy-wide fluctuations in migrations intensities
can result in large realised losses. Furthermore, systemic downgrade risks have
implications for a bank’s compliance with the Basel II Accord, where quality
restrictions for capital provisions are in place.

Keywords: credit migrations; rating through the cycle; issuer correlation; base-
line intensity.
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1. introduction

The primary motivation of this paper is to use the baseline intensity to examine a con-
tentious rating agency policy, that of rating corporate bonds through the cycle. Stan-
dard & Poor’s Corporate Ratings Criteria (Standard & Poor’s, 2006, pg. 33) stresses the
forward-looking nature of credit ratings and therefore cyclical behaviour, such as indus-
try or macroeconomic business cycles, should not directly affect an issuer’s credit rating.
Standard & Poor’s justification is that

there is no point in assigning high ratings to a company enjoying peak
prosperity if that performance level is expected to be only temporary. Similarly,
there is no need to lower ratings to reflect poor performance as long as one can
reliably anticipate that better times are just around the corner. (Standard &
Poor’s, 2006, pg. 34)

This policy should result in

... the observed rates of default in any period for Standard & Poor’s ratings
will vary over time and for different sectors depending on where a particular
industry is within the economic cycle. (Standard & Poor’s Risk Solutions,
2006, pg. 4)

By Standard & Poor’s definition, cyclical behaviour embraces financial risks, business risks
and rating policy. Thus, cyclical behaviour of an issuer’s financial data, such as sales or
net income, should not affect credit rating migrations. It is difficult to distinguish between
temporary and persistent changes in an issuer’s finances, with Standard & Poor’s conceding
that this policy is difficult to maintain because of the unpredictability of business cycles,
so an analysis of rating through the cycle is an analysis of Standard & Poor’s aspirations
rather than their steadfast assertions (Standard & Poor’s Risk Solutions, 2006). This does
not make such an analysis worthless; whether Standard & Poor’s achieves rating through
the cycle is important for establishing model assumptions and crucial in accounting for
systemic risks in portfolio management.

At present, little research directly investigates the policy as stated by Standard & Poor’s
above. For example, Amato and Furfine (2004) find support for rating through the cycle,
but they control for cyclical business and financial risks, and thus any finding is a reflection
of rating policy alone. Feng et al. (2008) reject rating through the cycle, and we aim to
further their conclusions by controlling for issuer-specific effects. Whilst not addressing
the policy of rating through the cycle directly, Nickell et al. (2000) and Bangia et al. (2002)
show that migration probabilities are time heterogeneous. Furthermore, Triick (2005) and
Parnes (2007) demonstrate a correlation between macroeconomic covariates and credit
rating migration probabilities.

We adopt the directional multiplicative intensity model by Evans (2007). Specifically, we
model the intensity process of a downgrade or upgrade (directional migration) from an
issuer’s current credit rating. Consider a simplified example of an issuer with credit rating
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AA: In previous studies, this issuer would have a probability or intensity of migrating to
any other credit rating, each one needing to be estimated and tested individually. Modi-
fying the approach of Evans (2007), this issuer has intensities for an upgrade, downgrade
and default from AA. A directional migration intensity has two components—a baseline
directional migration intensity and a relative risk function. A baseline intensity is the
downgrade or upgrade intensity common to all issuers in a stratum (in our case, this
stratum is an industry sector). A relative risk function scales this intensity up or down
according to an individual issuer’s riskiness. Whereas Evans (2007) focuses on the latter of
these components, we intend to analyse the former. The directional multiplicative inten-
sity model improves on previous research in examining rating through the cycle because
we are able to control for the issuer-specific effects through the relative risk function before
modelling the baseline intensity.

An understanding of the dynamics behind the baseline intensity is necessary to appreciate
the systemic risks of a corporate bond. While issuer-specific risks are diversifiable, it is
more difficult to manage risks shared by all issuers. The baseline intensities capture these
systemic risks, since these are the risks common to all issuers in a stratum. An intensity
model with an unspecified baseline intensity such as those fit by Evans (2007) is useful
in making decisions between assets and measuring issuer-specific risks, but the baseline
intensity requires specification to model an issuer over time. If an asset management regime
imposes a target default rate or credit-quality restrictions for capital adequacy (such as
investment grade assets only) then the absolute migration probabilities are necessary. More
recently, the Basel II Accord encourages the appreciation of systemic risks (Basel, 2004,
paragraph 503).

Rating through the cycle is analogous to basing assessment on a long-term default rate
(Feng et al., 2008). Temporary effects on the issuer—whether internal or external—do not
change the credit rating. In addition, Standard & Poor’s aim to maintain the long-term
default rate from a credit rating constant over time (Standard & Poor’s Risk Solutions,
2006). In the context of the directional multiplicative intensity model, these imply that
the baseline intensities are approximately constant through time. If an issuer’s credit rat-
ing is not dependent on an industry’s economic cycle, economic shocks or other common
temporary risks, then the cause of a credit rating migration must be issuer-specific. Fur-
thermore, by Standard & Poor’s definition, the cause of a credit rating migration must be
both persistent (non-cyclical) and issuer-specific. We test this implication by observing
the baseline intensities of our models. While previous studies attempt to capture rat-
ing through the cycle, the directional multiplicative intensity model is better placed to
account for issuer-specific effects without needing to directly specify and model business
cycle effects.

Controlling for the persistent issuer-specific effects refers to their appearance in the relative
risk function. Recall, the directional component of the migration model is a stratum-
specific intensity scaled by an issuer-specific relative risk function. Using the relative risk
function to reflect persistent issuer-specific information leaves the subsequently estimated
baseline intensity reflecting cyclical and systemic risks. If a control for persistent issuer-
specific effects is not used, implying a Markovian model (for examples, see Nickell et al.
(2000) and Bangia et al. (2002)), then a fluctuation in the migration intensity estimates
may be due to an aggregate change in the risk profiles of issuers.
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We complete two sets of analyses. Firstly, we complete an analysis using the demographic
effects of Lando and Skgdeberg (2002) and Evans (2007). The motivation here is to create
a model controlled for basic credit rating demographics; the time since entry and the mode
of entry into a credit rating (momentum and excitability). These effects are convenient
because we do not consider issuer-specific information except that generated by the credit
rating process itself. This model does not endorse or condemn rating through the cycle,
since Standard & Poor’s use other information in determining credit ratings. Regardless,
the demography-controlled model has the advantage of abundant data for a comprehen-
sive model and remains informative if asset management were to occur using only issuers’
credit rating processes. Moreover, it enables us to confirm industry heterogeneity in the
baseline intensities. Secondly, we analyse the baseline intensity after controlling for per-
sistent issuer-specific financial and business information. If this information adequately
summarises the data Standard & Poor’s uses for determining credit ratings, the resulting
baseline intensities will reflect the systemic risks retained in the migration intensities by
Standard & Poor’s. Unfortunately, we do not have a clear understanding of how data
affects Standard and Poor’s determination, or even access to this data in a timely manner.
We use the equity market as a proxy for determining a persistent change in an issuer’s
financial and business risks (for the stock markets anticipation of credit rating migrations,
see Hsueh and Liu (1992)). We propose that the equity market’s relative assessment of
an issuer compared to other issuers should correspond to persistent changes in the is-
suer’s financial or business risks. This market-reaction model is a simple and appropriate
representation of Standard & Poor’s policy.

The approximation of baseline directional migration intensities requires further exposition
on the directional multiplicative intensity model, and visualisation requires the adoption of
smoothing techniques. Industry stratification can often lead to dubious baseline intensity
estimates for credit ratings with few migrations due to the spacing of migrations over time.
Therefore, we combine the credit ratings into a rating grade to visualise fluctuations in
baseline intensities. In addition, we must depart from a model assumption made by Evans
(2007) because, unlike other downgrades, Standard & Poor’s accept that the frequency
of defaults fluctuate with the economic cycle (Koopman and Lucas, 2005). Thus, we fit
our directional multiplicative intensity model with downgrades excluding migrations to
default. We can think of an issuer as being subject to four competing risks; downgrade,
upgrade, lateral migration and default. This amendment to Evans (2007) does not alter
the coefficient estimates by a material degree.

By adapting the runs test (Benjamin and Pollard, 1992, pp. 233) and plotting smoothed
estimates of non-parametric baseline intensity estimates, we observe cyclicality in many
baseline intensities. The demography-controlled model rejects the independence of the
baseline intensities over consecutive half-years for most credit ratings. An aggregated
graphic representation of these baseline intensities show that migration intensities change
over time after controlling for the effects of momentum and excitability. In addition, we
see that the baseline intensities of industry sectors differ, as shown by Evans (2007).

Standard & Poor’s does not attain the objective of rating through the cycle. Upon con-
trolling for persistent risks using the market-reaction model, we reject baseline intensity
constancy in most investment grade credit ratings and industrial et al. speculative grade
credit ratings, advocating cyclical baseline intensities. Conclusions for the financial and
utilities sectors are tempered, however, with merged data samples (from corporate debt
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and equity databases) reducing the effectiveness of the runs test and the interpretability
of the smoothed baseline intensity estimates. Regardless, we show that baseline intensity
constancy remains questionable.

This paper proceeds as follows. We begin in section 2 by discussing the data Standard &
Poor’s data available for our analyses. Next, we develop Evans’ (2007) directional migra-
tion intensity model further, by deriving a baseline intensity estimate in section 3. This
includes the specification of the runs test in subsection 3.2 and the smoothing using kernel
functions in subsection 3.3. In section 4, we analyse the baseline intensity for demography-
controlled models, and in section 5, we do so with market-reaction models. Possible future
research is proposed in section 6 and our findings are summarised in section 7.

2. data

Credit rating data from Standard & Poor’s rating agency are sourced from Mergent®
Fixed Income Security Database (FISD). This database provides the categorisation of bond
issues into rating classes based on the issuer’s ability to service the debt, as determined
by Standard & Poor’s. All equity market data is sourced from the Centre for Research in
Security Prices® US Stock Database (CRSP). Appendix A elaborates on the data used
from FISD and CRSP.

We use Standard and Poor’s credit rating data from 1 January 1997 to 31 December 2006.
The credit ratings, from lowest to highest risk, are labelled AAA, AA+, AA, ..., B-, CCC,
CCC-, CC and C (see appendix B for rating definitions). We group the final three classes
(CCC-, CC and C) into one class labelled CCC-. We refer to credit ratings AAA to BBB-
as investment grade and BBB- to CCC- as speculative grade. Furthermore, this paper
refers to default as an absorbing credit rating labelled D. We include the Not Rated class,
labelled NR, but consider it neither higher nor lower than any other credit rating. The
five industry classifications used by Standard and Poor’s are industrial, financial, utilities,
government and miscellaneous. We combine industrial, government and miscellaneous
issuers into one group—industrial et al.

We have access to only issue credit ratings through FISD, but require issuer credit ratings
because multiple issues from a single issuer corrupt the independent subject requirement
of maximum likelihood estimation. Therefore, we allow only one issue for an issuer at
any time, and treat the issues as representative of the issuer’s credit rating. We contend
that this method is acceptable because the drivers of a credit rating migration should not
dramatically differ between the few close credit ratings that an issuer’s issues can reside,
and we intend to quantify these drivers. Upon maturity, we exchange the representative
issue for another, but we do not treat this as a migration if the new issue has a different
credit rating. We demonstrate this procedure in figure 1, where issuer k’s first issue is
right-censored on maturity at time ¢g and the second issue downgrades one credit ratings
at t1. In this example, issuer k is has credit rating AA until ¢y, A between ty and t1, and
migrates from A to A- at ¢; and is in A- from thereon. The second issue is left-truncated
at tg and prior information is discarded.

Our demography-controlled model requires that we exclude an issuer’s experience up to
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Figure 1: An example of right-censoring and left-truncation using hypothetical issuer k
with two issues

Issuer &

first issue @ O

second issue @ | @

0 t, t,

the first migration, and the market-reaction model requires the merging of the FISD and
CRSP databases. Both of these procedures reduce the sample size. The original Standard
& Poor’s sample statistics and the percentage available for each model are in appendix A.2

3. baseline directional migration intensity

We begin our formulation of the migration intensities with the states representative of the
ordered credit ratings as determined by Standard & Poor’s; AAA is the highest state (with
the lowest risk) and CCC- is the lowest state. The Not Rated state and the Default state
are treated as neither higher nor lower than other states, with migrations to and from the
Not Rated and Defaults states treated as lateral migrations. (This is a departure from
Evans (2007), who assumes default to be a downgrade.)

The multivariate counting process Nj;j¢ = (Njjre sk = 1,--- ,my) counts each migration
from state i to state j of each issuer in stratum ¢ = {1,---, M}, where M is the number
of strata and my is the number of issuers in stratum ¢. The full migration intensity is the
rate at which an issuer migrates between two specific credit ratings; often referred to as a
hazard rate. Assuming unique migration times from state ¢ within stratum ¢, we define

dAij ke (t) = E[dNij ke(t)| Fi-, G-
as the full migration intensity (Andersen and Gill, 1982) where

dNij,kE(t) = dlti%O(Nij’M(t_ + dt) — Nij7kg(t_)),

Aij ke(t) is the cumulative intensity process for issuer k migrating to state j from 7. {Fi}>0
is the appropriate filtration generated by the process up to time ¢, and {G;};>0 is an
ancillary information process containing information not dependent on the credit rating
process but relevant to the issuer up to time t.

Consider the directional multiplicative intensity model from Evans (2007) where the migra-
tion is from ¢ in direction d, where d is the set of credit ratings j either up, down, default or
lateral from the current state i. It contains a relative risk function (Y x¢(t) exp {8, Xx(t)}),
a baseline directional intensity (Agj;o,(t)) and a conditional destination mass function
(Pjjia,e(t)). We express this as

dAijre(t) = Yipe(t) exp { BiaXn(t) } dAgji00(t)pjjia,e(t),
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where dAg); 0¢()/dt is non-negative with fg dAgji0e(t) < oo for all £. This paper considers
the baseline directional intensity, but we require the relative risk function to estimate this
intensity.

The unconditional likelihoods of these intensity processes are

dN;;
L(dAgji o0 Bias Pjtiae) = [ | TT (Vire(®) exp {B1aXn () } dAgji 00 (£)p;jiae(t)) ske(®)
t \tkj

X exp [ — Z/ZZY@MS) exp {B1aXk(5) } dAgji 00(5)Pjliae(s) | (1)
¢ Ut

where Nid’kg, is proposed to count d-migrations, where

Niajee(t) =Y Nijre(t)

jed

is the total number of migrations in direction d from state ¢ for issuer k£ up to time t.

Evans (2007) demonstrates that the partial likelihood estimate of B;4 can be found inde-
pendently of pjjiq.¢ (appendix C.1). While applying partial likelihood estimation, Evans
(2007) mentions that an attractive property of the directional multiplicative intensity
model is that likelihood of dA;j x is maximised by maximising the likelihoods of p;);q . and
dAgj; e independently. We can show, using equation 1, that this is indeed the case, with

L(dAgi 005 Bid» Pjliae) = L1(dAgji 005 Bia) L2(Pjjia,e)

- Hpj\id,z(t)dNij,kz(t)
t0k;

X H (H (Yi,ke(t) exp { BigX(t) } dAd|i70g(t))dNid,k£(t)>

t \ ¢k
X exp (— Z /Z Y ke(s) exp {ﬂzl‘ka(S)} dAdi,OZ(5)> ) (2)
¢ 7tk
since >, pjjiae(t) = 1.

Thus, dNjjke(t) and d]\?id’kg(t) both have Poisson interpretations,

dNyj pe(t) ~ Poisson(Y; pe(t) exp { B4 Xk () } dAgji 00(t)Pj1ia,e(t))
dNjg pe(t) = Z dNijre(t)
J

~ Poisson(Y; pe(t) exp { Big X (t) } dAgji0(t)).
3.1. non-parametric estimation

We look first to consider non-parametric maximum likelihood estimation to define the
baseline directional migration intensity. This is an important advancement on Evans



Rating Through the Cycle

(2007), who examines only the relative risk components of the directional multiplicative
intensity model. We must assume that, in non-parametric estimation, Agj; o jumps only
when ]\Nfid,u jumps, leaving AA gj; 0,(t*) > 0 and ANid’M(t*) > 0 for every d-migration time
t* and zero otherwise. Thus, adapting equation 2, we have

AN
‘C(AAdH,Ob Bid7pj\id,€) = H leidf i3,k (L")
t*lkj

: H (H 2 k'f eXp {ﬁ ka‘ } AAd\z OZ( ))ANid,kz(t*)>
X exp (—ZZZYzM )exp { Blg Xk (")} AA gy 00(t )) (3)
Lttt k

We aim to find the non-parametric maximum likelihood estimate of the jump function
AAgji00(t*) at some migration time s* and in some stratum I, AAgj;p(s*). The first
derivative with respect to AAg; o(s*) of the logarithm of equation 3 is

OnL(ANgj; o0s Bia, Pjliae) Do, Ade kl Z Vil
OAA gjj 01(s*) AAg,00( ’

)exp {BiaXk(s")},  (4)

and the second derviative is

O*InL(ANgi 00, Bids Pjlid,e) _ — 2 AN;qr(s%) -
OAN gj; 01(5%)? ANgioi(s*)?

By setting equation 4 to zero we find the maximum likelihood estimate of AAgj; ;(s*)
conditioned on G;4 as

Zk ANid,kl(S*)
Zk zkl( exXp {ﬁ;dxk(‘g*)}’

which is an adaptation of the Nelson-Aalen estimate, often called the Breslow estimate
(Breslow, 1974).

AAdh,Ol( s Bid) =

Extending this to create our non-parametric continuous step function for the cumulative
baseline directional migration intensity for any stratum, subsequent to estimating 3;4, we
have

Agjio0(t; Bia) = /t Jie(s)dNia, £(s)
4,02\t 0 Zk Yi,kf(s) exp {ﬁ;ka(s)}

where Jig(t) = I{EkYi,u(t)>0} (With 0/0 = 0) and Zk dNid,kZ(t) = dNid,.g(t).

: (6)

Any inference on the Breslow estimate is under an assumption that G;q = Bid; we assume
coefficient estimates are deterministic. Since Bid has a margin for error, we confine our
analyses to those credit ratings where we are confident in the accuracy of Bid. For a
Breslow estimate to qualify for further inference, we require that the relative risk func-
tion containing Bl-d be a statistically significant improvement over a relative risk function
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where 8,4 = 0. This ensures that the relative risk function adequately contributes to the
understanding of the migration intensities and does not distort the baseline intensity.

We estimate 3;4 via partial likelihood estimation, with the procedure given in appendix C.1
and the results in appendices C.2 and C.3. These results are similar to those found in Evans
(2007).

3.2. runs test

We adapt the runs test (Wald and Wolfowitz, 1940) to compare our observed baseline
intensity to an assumption of baseline intensity constancy. Consider the time interval
(0, 7] under baseline intensity constancy, increments

t+s R
/ dAqji00(7; Bia)
¢
and
u+s .
/ dAgi,00(7; Bia)

are independent provided ¢ + s < u, and
t+s R u+ts N
P [/ dAgi,00(7; Bia) — ¢ > 0] =P [/ dAgji00(7; Bia) —c >0
t u

for any constant c¢. Thus,

1 for [/ dAg00(u; Bia) > ¢
0 otherwise

Se(t,t+s) :{

for each interval (0, s), (s,2s),..., (T — s,7) are independent also.
Given some ¢, we observe n, = szo_ ! Sc(us,us + s) positive deviations from ¢ and
n_ = 7/s — ny non-positive deviations. We denote the number of groups of consecutive

positive deviations as G, with observation gy (where g1 < min(ny,n_ + 1)). Under
an assumption of baseline intensity constancy, the sequence of positive and non-positive
deviations should be random. Our test statistic is based on the probability of observing
as few groups as g, if the arrangement of n4 positive and n_ non-positive deviations is
random.

The total number of distinct arrangements of n positive and n_ non-positive deviations
is
ny+n_\ _ (ny+n) (g +n)!
N N n_ T onglnl!l

(n+ — 1) _ (ny —1)!
9+ —1 (9+ — Dl(nt — g4)!

distinct ways n4 positive deviations can be sorted into g4 non-empty groups (Benjamin
and Pollard, 1992, pp. 234). Furthermore, g, groups can be distributed between n_

non-positive deviations
<n_+1> B (n—+1)!
9+ g+l(n—+1—g4)!

There are
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distinct ways (it helps to think of allocating ¢4 items into n_ + 1 possible positions).
Thus, the number of distinct ways to obtain gy positive groups amongst ny positive and

n_ non-positive deviations is
o) (%)
g+ —1 9+ /)’

and the probability of obtaining no more than g4 positive groups from n, positive and
n_ non-positive deviations is

g9+ (ny—1\(m_+1
P[G+Sg+]=ZW

r=1 ng
g+—1 my—1\/m_+1

- Z ( 7Zn+)+(:—)y)’ (7)
y=0 ny

which is a cumulative hypergeometric distribution.

If the baseline intensity is not constant, and for appropriate ¢, we will see sustained periods
of the intensity being above or below ¢. This creates fewer groups of consecutive positive
(or non-positive) deviations than if each observed deviation were independent of the last.
The hypergeometric distribution provides us with the probability of observing a particular
arrangement of deviations, conditioned on the number of each deviation and that they are
independently distributed.

We choose ¢ such that, under a hypothesis of baseline intensity constancy,
t+s R R
P [/ dAgji0e(r; Bia) — ¢ < 0} > 0.5, and
t

t+s R R
P [/ dAgji0e(r; Bia) — ¢ > 0} > 0.5.
t

That is, the median value of the discrete set, where up to half of the baseline intensity
increments exceed c. We adopt the median since it provides the best opportunity for an
equal number of positive and non-positive deviations, giving the largest sample possible
for the test. Due to the skewness of ftt+s dAd‘ivog(u;,Bfid), an adoption of the median for
¢ does not necessarily result in ny = n_ because the sample is more than half occupied
by zeros for credit ratings with rare d-migrations, although the median still provides the
most positive deviations in this case. Regardless, instances where n_ > n, rarely provide
sensible results because they are often indicative of a low population at risk rather than a
low migration intensity.

The definition of cyclicality is ambiguous and flexible—possibly defining a weak constraint
of baseline intensity fluctuations of undefined length and size or a strong constraint of
baseline intensity fluctuations being predictable and rhythmical. The runs test adopts
the former definition, with both the numbers in a group and magnitude of the deviations
irrelevant. Such a test is preferable since we do not impose functional restrictions on
the baseline intensity behaviour. If the strong constraint of predictable and rhythmical
baseline intensities is appropriate then the weak constraint still applies and the runs test
remains applicable.

This paper deals with the identification of cyclicality, and does not fit common risks to
quantify causation. Therefore, the runs test is ideal because it is unassumptive in its assess-

10
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ment of cyclicality. Common methods, such as examining autocorrelation coefficients with
the Durbin-Watson d-statistics (Gujarati, 1995), require far more onerous assumptions.
Firstly, constant autocorrelation coefficients test the strong constraint where fluctuations
are rhythmical and predictable, and non-constant autocorrelation coefficients require much
larger samples sizes than our experiment can provide. Secondly, most common tests of
autocorrelation require the residuals (the deviations from a null hypothesis of indepen-
dence) to be normally distributed—a property that the heavily skewed intensities fail to
fulfil. Lastly, these tests impose a constant variance over the sample period; the runs test
does not impose this restriction. Thus, we propose that the runs test is intuitively more
suitable to assessing baseline intensity fluctuations of undefined length and size without
unnecessary restrictions.

We refer to the runs of like deviations as clumping, with positive deviations observed in
distinct clumps. The p-value of the runs test, testing the null hypothesis of the baseline
intensity for subsequent periods being independent against the alternative hypothesis of
clumping, is P [G4 < g4] (equation 7).

3.3. smoothed intensities

To show the baseline intensities graphically we use a Kernel function to find smooth
baseline intensities between t; and 9,

Q t2 t—s\ & .
Aji.or(t) = b_l/ Kaie (b) dAgyi0(5; Bid), (8)

t1

where b is known as the bandwidth, which determines how far either side of a point is
used when smoothing, and b < t; < to < 7 —b. A larger bandwidth produces a smoother
intensity but risks biasing the estimate.

Furthermore, we use the Epanechnikov kernel function (Epanechnikov, 1969),

)

K(z) 0.75(1 —22) for —1<2<1
) — .
0 otherwise

a choice that differs little in results from most common kernel functions (Silverman, 1986,
pg. 43).

The optimal bandwidth for smoothing a baseline intensity estimate, b%,,, is found by

byie = arg min MISE(S‘IZM,OZ (1)),

where MISE(S\Z|i70l(t)) is the mean integrated squared error (Silverman, 1986, pg. 40).
We can express this as

< tz /. 2
MISE\; q(1) = E/t ()‘Zu,m(t) - )\d\i,Ol(t)) di
1

to R to .
E/ )‘Z|i,oz(t)2dt - 2JE/ >‘2|i,0l(t))‘d\i,01(t)dt

t1 t1

to
+E [ Agsal0?dr (9)
t

1

11
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We minimise equation 9 with respect to b by obtaining the first term through the estimates
from equation 8, obtaining the second term by the approximately unbiased estimate

23 b K <t* - S*> >k ANig g () >k AN (s®)
eyl ' b ) 3 Yim(t) exp {8 Xu(t*) } 2op Yisa(s*) exp { B}, Xx(s7) }

where both t* and s* are event times with ¢; < ¢* < t5 (Ramlau-Hansen, 1983), and
noting that the final term in equation 9 is constant with respect to b. We use computation
methods to minimise MISE()\Z|i70l(t)) —-E fttlz Agji,on(t)?dt) and thus find bj,.

Rather than adopt linear ninety-five percent point-wise confidence bands, we—with the aid
of the delta method and equation 5—assume that the natural logarithm of the estimator
for )\d‘im(t) follows an asymptotic normal distribution, giving the confidence interval

A +1.96 ., [t t— s\ 2 dAgp0(s)?
)‘d\i,Ol(t) exp Abdi%/ de ( b > J ’ . (10)
Adlior () t dit dNiq,.e(s)

In addition to being aesthetically superior to linear confidence bands, since they cannot
fall below zero, this transformation is an improvement when dealing with a small sample
size (Bie et al., 1987).

4. demography-controlled model

We control the directional migration intensities for successive migrations being more prob-
able in the same direction (momentum), and for more recently migrated issuers having
higher migration intensities (excitability). Controlling for these causes of population het-
erogeneity delivers results similar to Lando and Skgdeberg (2002) and Evans (2007). With
the presence of momentum and excitability, a Markovian model (Nickell et al., 2000; Ban-
gia et al., 2002) can be misleading because of possible demographic changes in the credit
rating. For example, where a large proportion of issuers downgrade into a credit rat-
ing, momentum can explain a heightened downgrade intensity, with excitability further
aggravating the intensity if these downgrades were recent. Where these population char-
acteristics change over time, a basic migration matrix will fail to reflect the true migra-
tion intensities. Standard & Poor’s (2007) show that upgrade and downgrade frequencies
change over time, with, for example, over twice the percentage of issuers downgraded in
2002 as in 1997 (18.72% versus 7.82%). Given Standard & Poor’s policy of rating through
the cycle, this implies large demographic shifts within (by momentum and excitability)
or between credit ratings. Furthermore, years of many (or few) upgrades or downgrades
follow similar years; for which momentum or excitability are viable explanations.

Our demography-controlled model incorporates the demographic differences in a credit
rating—momentum and excitability—as issuer-specific effects. We model momentum by
defining the first element of X in equation 1 as

1 if the most recent migration at time ¢ was down

0 otherwise

]lk,down (t) - {
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for downgrades, or

1 if the most recent migration at time ¢ was up
]lk,up( ) =

0 otherwise

for upgrades, and excitability by defining the second element of Xy, as log(t—t}.) X1 down (t)
or log(t — 7)) x 1y up(t) for downgrades or upgrades respectively, where ¢} is the time of
the most recent migration of issuer k.

This provides us with a simple model for credit rating migrations, where the credit rating
process generates the only factors driving relative risk. We do not consider the financial
state of an issuer in calculating migration intensities; this demography-controlled model
provides a hypothetical example of the directional multiplicative intensity model in a
research-free environment. Management of a portfolio of corporate bonds with scant re-
gard for issuers’ balance sheets is consistent with this hypothetical example. Importantly,
the demography-controlled model does not provide any reflection on the policy of rating
through the cycle, since Standard & Poor’s conducts analyses of issuers’ financial condi-
tions. Appendix C.2 contains the coefficient estimates for relative risk functions of the
demography-controlled model.

The demography-controlled model does account for possible distortions in baseline in-
tensity estimates due to the demography of the issuers at risk. Therefore, the control
for these demographic covariates is not trivial;, the characteristics of the population of
issuers in an industry sector with respect to these covariates changes over time. These
demographic shifts invalidate Markovian models (or equivalently a directional migration
intensity model with no issuer-specific effects) such as Bangia et al. (2002).

4.1. non-constancy of the demography-controlled baseline intensities

We perform the runs test from section 3.2 on the demography-controlled model to test weak
cyclicality beyond demographic effects, and to demonstrate the strengths and weaknesses
of the model before using it to test rating through the cycle in section 5.1. Furthermore,
we provide impetus for the runs tests with an example of sample deviations and the
autocorrelations estimates.

We adopt half-years for our observation increments over the ten years from 1 January 1997
to 31 December 2006; twenty deviations in total. The use of half-years is a compromise
between economic and statistical significance, with the following considerations: Firstly,
longer increments capture fundamental shifts in the baseline intensities rather than market
noise, which is appropriate because broader economic cycles are usually in excess of a
year. Thus, the runs test is unable to identify cyclicality with peaks and troughs of less
than one year. This argument also applies against making increments too long, which
may show no clumping because an entire cycle is within an increment. Secondly, strata
with rare migrations require longer increments for the runs test to be effective, since
shorter increment lengths increase the likelihood of no migrations in an increment, and
thus consecutive positive deviations become unlikely even in years of heightened baseline
intensity. Lastly, longer increments result in a smaller sample, reducing the ability to form
meaningful conclusions (with possibly no combination of positive and negative deviations
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Figure 2: Baseline Downgrade Intensity Deviations from Median for industrial et
al., financial and utilities sectors for each half-year increment from 1997 to 1006 inclusive.

In addition, we provide the p-values from the runs tests.
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observation increment

being too unlikely). Regardless, results hardly differ for increment lengths between one
month and one year for the most populous credit ratings.

Figure 2 shows the observation increment deviations for downgrades from industrial et al.,
financial and utilities issuers in credit rating BB+. These deviations inform the runs test of
cyclicality if the number of groups of positive deviations is improbable under an assumption
of incremental independence. We see that the industrial et al. sector experiences long runs
of positive and negative deviations, and the p-value from the runs test confirms this. The
utilities sector also rejects baseline intensity incremental independence, although not as
convincingly as the industrial et al. sector because the runs are shorter. We fail to reject the
null hypothesis of incremental independence for the financial sector because the deviations
oscillate between positive and negative for the first three years, although long runs in the

later increments results in a p-value below ten percent.

Figure 3 summarises the dependence in successive observation increments showing the first-
order autocorrelation statistics. Autocorrelation summarises the departure of successive
random variables from independence. These correlation coefficient estimates are mainly
positive with the exception of medium-risk financial sector downgrade intensities, meaning
that a period of high baseline intensity is likely to precede another. On inspecting the
example in figure 2, the negative correlation coefficient estimate for BB+ financial baseline
downgrade intensity is unsurprising, given the oscillation of the deviations earlier in the
sample period. The difference in estimates between credit ratings and industry sectors

justifies the discrimination by these categories.
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Figure 3: First-Order Autocorrelation Estimate of the Baseline Intensities
for each industry sector, credit rating and migration direction over 1 January 1999 to
31 December 2004.
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Table 1 contains the median, positive deviations (n4 ), positive groups (g+) and p-value
for downgrades and upgrades in each credit rating and industry stratum. The number of
positive deviations is usually ten—half of the sample. The number of positive deviations is
less than ten when the median is zero, meaning migrations occur in less than half the ob-
servation increments. When there are ten positive deviations, any fewer than six positive
groups will result in a rejection of the null hypothesis of independent increments. In any
case, the results are unreliable when there are less then ten positive deviations. We qualify
the experiment further by stating whether the relative risk function of the directional mul-
tiplicative intensity model is a statistically significant improvement on an empty relative
risk (time-varying Markovian model). Where the improvement in unconvincing (Qualify?
= N), we cannot be confident that the Breslow estimate requirement of 3;3 = Bl-d is met,
and thus are sceptical of the legitimacy of the baseline intensity estimate.

We find that baseline intensity constancy is usually rejected in the most populous credit
ratings and industry sectors (where the number of positive deviations is ten). Moreover,
we usually observe six positive groups resulting in a p-value of eight percent when we are
unable to reject the null hypotheses in the populous credit ratings. Downgrades in the
industrial et al. sector shows statistically significant clumping for all credit ratings except
A+ and A-. We observe similar significance with downgrades in the financial sector,
with only BBB- and BB+ failing to reject baseline intensity constancy. While we can be
confident in the results of the utilities sector in the investment grade credit ratings, very
few issuers at risk in the earlier years leave the credibility of null hypotheses rejections in
the speculative grade credit ratings under suspicion.

Similar suspicions are prevalent in the upgrades as well. Risky utilities sector issuers and
very risky financial sector issuers are often among very few other issuers in their credit
rating, meaning rejections of the null hypotheses may be symptomatic of the unreliability of
the Breslow estimation (equation 6) rather than baseline intensities cyclicality. Regardless,
the more populous credit ratings, where the median is greater than zero and the relative
risk function improves on an empty model, argue strongly against the baseline intensity
constancy with rejection or near-rejection in almost all instances.

We can conclude here that baseline intensity constancy is inappropriate when applying
a demography-controlled model. Some factors other than momentum and excitability—
either systemic and/or issuer-specific risks—change the baseline intensities over time. In
addition, we see also that the runs test, although powerful and unassumptive for populous
credit ratings, is flawed when we cannot rely on the Breslow estimate for the baseline in-
tensity. This is sensible, since we cannot test if a process is cyclical if we cannot adequately
estimate the process.

4.2. smoothed estimates of the demography-controlled baseline intensities

While the runs test rejects baseline intensity constancy in the well-populated credit rat-
ings, it fails to illustrate the behaviour of these baseline intensities beyond clumping. In
particular, contrasting the baseline intensities between industry sectors is impossible with
the runs test. To compare these distinctions and for a visual appreciation of other be-
haviours, we fit optimised kernel functions to provide smooth baseline intensity estimates.
The demography-controlled baseline intensity represents an issuer’s directional migration
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Table 1: Runs Test for the Demography-Controlled Model in each credit rating
(1), migration direction and industry sector from 1 January 1997 to 31 December 2006.
Each test includes the median baseline intensity estimate integrated over half-year incre-
ments, the number of positive deviations (n4), the number of positive groups (g4 ), and
the probability of observing no more than g, positive groups among n, positive devia-
tions under an assumption of increment independence (p-value). Qualify? indicates the
statistical significance of the relative risk Model Fit (Y=yes, N=no).

Industry Sector Industrial et al. Financials Utilities

Rating (i) Qualify? median ny — gy p-value median ny — gy p-value median ny — gy p-value

The Downgrade Migrations

AA+ Y 0 8—3 0.001 0 9—-4 0.004 0 2-—-2 1.000
AA Y 0.097 10 -5 0.013 0.076 10 — 4 0.001 0 4—-4 1.000
AA- Y 0.068 10-5 0.013 0.056 10-5 0.013 0.07 10 -3 0.000
A+ Y 0.096 10-7 0.285 0.072 10 — 4 0.001 0.072 10-5 0.013
A Y 0.074 10 -3 0.000 0.038 10-5 0.013 0.097 10-5 0.013
A- Y 0.092 10 -6 0.081 0.036 10 — 4 0.001 0.069 10-5 0.013
BBB+ Y 0.072 10 -5 0.013 0.039 10-5 0.013 0.049 10-5 0.013
BBB Y 0.083 10-5 0.013 0.053 10-5 0.013 0.05 10-5 0.013
BBB- Y 0.071 10 -3 0.000 0.061 10 -8 0.625 0.057 10-5 0.013
BB+ Y 0.051 10 -3 0.000 0.036 10 -6 0.081 0.032 10-5 0.013
BB Y 0.082 10 —4 0.001 0.064 10-5 0.013 0 9—4 0.004
BB- Y 0.101 10 — 4 0.001 0.102 10-5 0.013 0 9—4 0.004
B+ Y 0.075 10 — 4 0.001 0.057 10 -3 0.000 0 7—3 0.003
B Y 0.084 10 -3 0.000 0.099 10-5 0.013 0 9—-4 0.004
B- Y 0.123 10 -5 0.013 0.048 10 — 4 0.001 0 3-3 1.000
CcCcC+ Y 0.155 10 -3 0.000 0.091 10 — 4 0.001 0 7T—4 0.035
ccce Y 0.124 10 -5 0.013 0.08 10—-5 0.013 0 9—-5 0.033
The Upgrade Migrations

AA+ Y 0 6 —2 0.000 0 1-1 1.000 0 0—-0 —
AA Y 0 5—3 0.051 0 2-2 1.000 0 0—-0 —
AA- N 0.022 10 -6 0.081 0 4—4 1.000 0 2-2 1.000
A+ Y 0 9—-5 0.033 0.034 10— 4 0.001 0 6—3 0.011
A Y 0.028 10-5 0.013 0.034 10— 4 0.001 0 7—5 0.214
A- N 0.041 10—-6 0.081 0.062 10— 4 0.001 0.035 10 -5 0.013
BBB+ Y 0.032 10 -5 0.013 0.054 10 — 4 0.001 0.017 10—-7 0.285
BBB Y 0.04 10 -6 0.081 0.049 10-5 0.013 0.023 10 — 4 0.001
BBB- Y 0.064 10—-5 0.013 0.075 10 -6 0.081 0.067 10—-5 0.013
BB+ Y 0.079 10 -6 0.081 0.083 10—-5 0.013 0.082 10—-5 0.013
BB Y 0.081 10 -6 0.081 0.094 10—-7 0.285 0.157 10— 4 0.001
BB- Y 0.058 10 -6 0.081 0.04 10 — 4 0.001 0 9—-5 0.033
B+ N 0.088 10 —4 0.001 0.056 10 -3 0.000 0.108 10 -6 0.081
B Y 0.058 10 -6 0.081 0.078 10 -6 0.081 0 9—4 0.004
B- Y 0.055 10 -3 0.000 0 9-3 0.000 0 6—3 0.011
cCcC+ Y 0.048 10-5 0.013 0 6—6 1.000 0 4 -2 0.016
ccce Y 0.081 10— 4 0.001 0 5—4 0.372 0 2-2 1.000

intensity that is not attributable to momentum or excitability. Specifically, the baseline
intensities reflect systemic risks, temporary and persistent changes in an issuer’s business
and financial risks, as well as changes to the rating agency policy.

Individually smoothed baseline intensity estimates are numerous and often similar in
shape. We combine the baseline estimates for each credit rating into the investment
and speculative grades to summarise the baseline intensity behaviour without burdensome
results. We do not contend, however, that all issuers of the same rating grade experience
the same baseline intensities—the contrary is demonstrably true—and so the weighted av-
eraging of the baseline intensities is more complex than merging smoothed intensities. The
average baseline intensities differ by credit ratings, but the fluctuations of the baseline in-
tensities are similar by credit ratings. This is consistent with the lower credit ratings being
riskier, but systemic risks affect the baseline intensities proportionally. Thus, we combine
credit ratings by estimating aggregated Breslow estimates after controlling for each credit
rating’s relative risk function. Smoothing this estimate gives an approximation of the
baseline directional migration intensity weighted by the reliability (measured by inverse
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variation) of each credit rating’s contribution. This aggregation does not deliver the true
baseline intensities, but does illustrate where common risks affect all credit ratings—the
objective of this paper. In summary, we present figures in this section that reflect the
relative behaviour of the baseline intensities over time, but do not capture the magnitude
of an issuer’s baseline intensity. This is only a minor concession because the baseline mag-
nitude is difficult to interpret without knowing the make-up of the population’s relative
risks.

Recall, the Breslow estimate requires that 3,4 = Bid. This assumption is dubious for credit
ratings with low populations because the standard error of the estimate may be large. To
avoid nonsensical graphics due to inaccurate relative risks distorting the baseline intensity
estimates, we require that the log-likelihood ratios between the relative risk estimates and
empty models (time-varying Markovian models) show the superiority of the fitted model
with ninety-five percent confidence. Where this requirement is unmet, we exclude the
credit ratings from the aggregated Breslow estimate and thus smoothed baseline intensity
estimate. These Model Fit qualifications are in table 1 and the Model Fit statistics are in
appendix C.2.

The optimal bandwidth to the nearest ten calendar days, as determined by minimising
equation 9, varies between baseline intensities. We set a minimum bandwidth of one-
hundred calendar days (approximately 69 business days) to ensure the smoothed intensity
is representative of trends rather than localised fluctuations. Likewise, we set a maximum
bandwidth of just under two years (approximately 483 business days) to ensure the esti-
mates at that time are representative of the baseline intensity and the interval remaining
for the graphic is sensible.

Figure 4 provides the smoothed baseline downgrade intensity estimates over six years from
the 1 January 1999 to 31 December 2004, which ensures that all smoothed estimates can
be calculated at the maximum bandwidth restriction. Each graph provides the smoothed
estimates for industrial et al., financial and utilities issuers’ baseline intensities, with a
graph for downgrades from investment grade and speculative grade credit ratings. The
shape is more important here than the magnitude because the relative risk function can
scale the baseline intensity up or down by large multiples. While the smoothed baseline
intensities allow us to appreciate the trends, we must consider the variance if we wish to
judge whether such trends depict cyclicality or rogue observations. We include confidence
bands around each smoothed estimate to demonstrate the interval of where the baseline
intensity lies with ninety-five percent confidence. These confidence bands include the
variability in the Breslow estimate and the subsequent smoothing, although they treat
the issuer-specific coefficient estimates as deterministic. We occasionally truncate the 97.5
percent confidence band for the utilities sector downgrade intensities to allow adequate an
adequate scale for interpretation.

We must be careful in drawing ambitious conclusions from these figures; we show only
smoothed estimates of the baseline migration intensities, and judgements on the nature
of the full migration intensities would require an incorporation of the issuer-specific infor-
mation that these estimates are conditioned upon (see equation 6). These figures allow
conclusions, however, on the systemic risks affecting migration intensities.

A constancy assumption for the baseline downgrade intensity appears improper in all
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Figure 4: Smoothed Baseline Downgrade Intensity Estimates for the
Demography-Controlled Model for each industry sector and rating grade from 1 Jan-
uary 1999 to 31 December 2004. The industrial et al. sector is blue, the financial sector is
red and the utilities sector is green. Optimal bandwidths: investment grade (100,100,100);
speculative grade (100,110,160).
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industry sectors for investment grade and speculative grade issuers. We observe that
these intensities differ between industry sectors, with estimates often moving beyond each
other’s confidence bands, but many fluctuations occur at the same time. For example,
all issuers appear to experience heightened downgrade intensities in late 2002. This is
consistent with the experiments of Giampieri et al. (2005), who observe that different
industry sectors experience heightened default intensities at similar times. Also notable,
is that one industry sector does not dominate, with each sector experiencing periods of
the highest baseline downgrade intensity. This is crucial to our understanding of industry
heterogeneity because it means that that industry-specific effects on the migration intensity
are not proportional, confirming the use of Monte Carlo simulations by Evans (2007).
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For the industrial et al. sector, we find that the baseline downgrade intensity estimates
are not constant, or even piece-wise constant (which may occur with a Standard & Poor’s
policy change). Intensities in both investment grade and speculative grade credit ratings
show heightened systemic risks from early 2001 to mid-2002. Otherwise, the downgrade
intensities of these rating grades differ, with the investment grade issuers alone in suffering
larger downgrade intensities in mid-2003 and late 2004, while the speculative grade issuers
have heightened downgrade intensity in early 1999.

Financial issuers begin and end the period displayed with relatively low baseline down-
grade intensities in investment grade and speculative grade credit ratings. While both rat-
ing grades show increased baseline downgrade intensities at similar times, an investment
grade issuer experiences very high common risk at the end of 2002, whereas a speculative
grade issuer’s baseline downgrade intensity peaks at the end of 2001 after over a year of
heightened common risks. Smaller sample sizes mean wider confidence bands in the spec-
ulative grade credit ratings, although we still discard an assumption of constant baseline
downgrade intensities.

We have less confidence in the accuracy of utilities baseline downgrade intensities, al-
though we remain able to reject constancy in both the investment grade and speculative
grade. The wider confidence bands—particularly for speculative grade credit ratings—are
a consequence of fewer issuers at risk and downgrading in these credit ratings. Although
both rating grades show low migration intensities before 2001 and after 2003, the relative
extremes of the heightened baseline intensities from 2001 to 2004 differ: the investment
grade shows a severely exaggerated baseline downgrade intensity in late 2002; whereas the
speculative grade is no riskier at this time than over the previous year.

When comparing smoothed baseline upgrade migration intensities in figure 5, note that
we have altered the scale of the vertical axis in each of the graphs to give a clearer
picture. Regardless, the shape is more important here than the magnitude, since, as
previously mentioned, the relative risk function can scale the baseline intensity up or
down by large multiples. The smoothed baseline upgrade intensity estimates display less
profound fluctuations than the downgrade intensities. For these smoothed estimates, we
exclude credit ratings AA- and A- from the investment grade and credit rating B+ from
the speculative grade because the relative risks are unreliable (see appendix C.2).

Industrial et al. and financial issuers have similar baseline intensities, with the smoothed
estimates within each other’s confidence bands until late 2003 in both rating grades. While
this is not surprising in the speculative grade (because of the low population in the finan-
cial sector), the baseline intensities in the investment grades are accurate, and thus the
similarities suggest industry homogeneity may be acceptable up to 2004. The smoothed
estimates in the utilities sector are distinct from those in the industrial et al. and finan-
cial sectors, with higher upgrade intensities before 2000 and after 2003. Accuracy of the
baseline upgrade intensities for speculative grade utilities issuers is poor, however, with
few observations resulting in wide confidence bands.

The baseline upgrade intensities are similar in investment grade and speculative grade
credit ratings over the middle of the observation period, with the estimates for all industry
sectors ebbing from the middle of 2001 to the end of 2002. Although both rating grades
show higher common risks at the end of the observation period, investment grade issuers
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Figure 5: Smoothed Baseline Upgrade Intensity Estimates for the
Demography-Controlled Model for each industry sector and rating grade from 1 Jan-
uary 1999 to 31 December 2004. The industrial et al. sector is blue, the financial sector is
red and the utilities sector is green. Optimal bandwidths: investment grade (100,100,100);
speculative grade (100,100,160).
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appear to experience these effects earlier (from early 2003 compared to late 2003 for
speculative grade issuers). Furthermore, the investment grade shows intensity fluctuations
during 2000, when the speculative grade is relatively stable. This observation is in conflict
with our intuition that speculative grade issuers have greater exposure to systemic risks
(refer to credit rating definitions in appendix B), and the observation by Triick (2005) that
speculative grade issuers are more sensitive than investment grade issuers are to systemic
risks.

We do not discuss the differences between downgrade and upgrade intensities, since it
solicits consideration of the causes of baseline intensity fluctuations. Therefore, we delay
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this discussion until migration intensities are controlled for market-driven covariates, where
we have confidence that baseline intensity cyclicality is a result of systemic risks.

Demography-controlled models account for commonly cited and shown issuer-specific ef-
fects (for example, Lando and Skgdeberg (2002) and Christensen et al. (2004)) before
estimating a baseline intensity. Without including momentum and excitability, baseline
intensity estimates can be distorted because the demography; the number of issuers that
downgraded into the credit rating or the average time spent in the credit rating; can change
over time. In addition to rejecting constancy, we can see that the baseline intensities of
issuers suffer peaks and troughs that differ by industry sector.

5. market-reaction model

We use the market-reaction model to test the Standard & Poor’s policy of rating corporate
bonds through the cycle. Standard & Poor’s undertake thorough quantitative and qualita-
tive analyses on issuers to determine credit ratings, the components of which are unknown.
As the introduction discusses, rating through the cycle implies that only persistent changes
in the financial and business risks associated with an issuer affect their credit rating. That
is, non-cyclical effects on the default risk affect downgrade and upgrade intensities. It is
difficult, and possibly futile, to identify cyclical and persistent changes in an issuer’s risk
profile, as contributing factors would be numerous, highly correlated and divisible. For
example, a rise in net income may be divided between improved management and a boom
economy, or a stagnant net income may reflect improved management, but in a recession.
Instead, we use the equity market evaluation of an issuer’s financial and business risks
relative to other issuers.

We represent the market reaction to a relative change in an issuer’s risks by market-
driven covariates. Firstly, we use the continuously compounded return in excess of the
market index as representative of the risk profile of an issuer relative to other issuers,
where a strengthening performance outlook relative to other issuers will cause a positive
excess return. Equity markets provide us with this simple summary statistic (supposedly)
based on analyses of risks. Bondholders do not have the same incentive for additional
risk as equity-holders, however, with risky ventures by issuers not necessarily positive for
bondholders. We fit also the volatility of the excess return to cater for this conflict of
interests, allowing the bond riskiness to increase with any movement in equity. Lastly, we
include the (natural logarithm of the) relative size of an issuer as measured by their market
capitalisation because size affects the issuer’s ability to service debt and to refinance. Both
return and volatility measures are calculated over a three month period.

We diminish our sample size of issuers by approximately 58 percent when we merge debt
and equity databases (see appendix A.2). The statistical significance of the coefficient
estimates is convincing, and the economic significance is sensible (see appendix C.3), de-
livering insight into the relative impact of market-driven covariates for each credit rating.
The power of these market-driven covariates to rank issuers according to relative risk is
analogous to the market-reaction models applicability for examining rating through the
cycle. Where we are not confident that the relative risk function is more informative than
an assumption of population homogeneity (if Model Fits are not statistically significant
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improvements over the time-varying Markovian model), inference on the Breslow estimates
for the baseline migration intensities is improper.

We obtain the Breslow estimates by setting ﬁid in equation 6 as the coefficient estimates
from partial likelihood estimation for each rating class. If Bz-d captures the persistent fi-
nancial and business risks, then the Breslow estimate produces the cumulative directional
baseline migration intensity inclusive of cyclical financial and business risks, common ef-
fects and rating agency policy. Under Standard & Poor’s policy of rating through the
cycle, this Breslow estimate should be linear and the baseline intensity should be constant
over time.

5.1. non-constancy of the market-reaction baseline intensities

We examine clumping of the baseline intensity estimates for rating classes in sequential
half-years. We take a rejection of the null hypothesis; that the probability of being above
the median is independent for each non-overlapping time increment; as analogous to a re-
jection of baseline intensity constancy and thus rating through the cycle. As in section 4.1,
we present the median, positive deviations (n4 ), positive groups (g+) and p-value of the
runs test. These results are shown in table 2 for downgrades, upgrades, each credit rating
and each industry sector. We give little credence, and thus dedicate little discussion, to
the runs tests where the relative risk function is unconvincing (Qualify? = N) or where a
minority of increments contain d-migrations (ny < 10).

Despite controlling for persistent financial and business risks, the runs test confirms sta-
tistically significant clumping of positive deviations in many rating classes and industry
sectors over the ten year period from 1 January 1997. In other words, issuers undergo
intervals spanning at least one year of high or low baseline intensity over the decade.

The smaller sample size in comparison to the demography-controlled model diminishes our
ability to make inference on baseline intensity constancy. Specifically, upgrade intensities
from AA+ to A+ fail to provide strong enough relative risk functions to qualify for the runs
test, nor do downgrade intensities from AA+ and AA-. Furthermore, too few migrations
impair inference on financial sector downgrades from AA and B- to CCC, utilities sector
downgrades from AA and BBB- to CCC, financial sector upgrades from BB to CCC and
utilities sector upgrades from A, BBB+ and BB to CCC. Although unfortunate, it is
difficult to conceive a statistical test for non-constancy that is able to provide for such
small populations and control for issuer-specific effects.

Where the migrations are many and the Breslow estimate qualifies, the rejection of baseline
intensity constancy is persuasive for downgrades. Particularly, all credit ratings in the
industrial et al. sector have p-values less than ten percent, with all except industrial et al.
AA rejecting the null hypotheses of constancy with ninety-five percent confidence. Of the
financial sector; A+, BBB+ and BB fail to reject constancy; and of the utilities sector;
only A+ fails to reject constancy. Overall, separating baseline downgrade intensities into
half-yearly increments shows definitive clumping of deviations greater than (and less than)
the median observation. The only rating grade where we do not observe clumping is when
we are unable to make inference on the downgrade intensities for speculative grade utilities
issuers.
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Table 2: Runs Test for the Market-Reaction Model in each credit rating (i) and
industry sector from 1 January 1997 to 31 December 2006. Each test includes the median
baseline intensity estimate integrated over half-year increments, the number of positive
deviations (n4), the number of positive groups (g+), and the probability of observing
no more than g, positive groups among n,4 positive deviations under an assumption of
increment independence (p-value). Qualify? indicates the statistical significance of the
relative risk Model Fit (Y=yes, N=no).

Industry Sector Industrial et al. Financials Utilities

Rating (i) Qualify? median ny — gy p-value median ny — gy p-value median ny — gy p-value

The Downgrade Migrations

AA+ N 0 4—-3 0.239 0 3—-3 1.000 0 3-—-3 1.000
AA Y 0.005 10 -6 0.081 0 7—6 0.643 0 3-3 1.000
AA- N 0.039 10 -6 0.081 0 9—-5 0.033 0.021 10— 4 0.001
A+ Y 0.016 10-5 0.013 0.007 10-7 0.285 0.002 10 -6 0.081
A Y 0.011 10 — 4 0.001 0.004 10— 4 0.001 0.008 10 -3 0.000
A- Y 0.012 10 -5 0.013 0.006 10— 4 0.001 0.008 10-5 0.013
BBB+ Y 0.011 10 — 4 0.001 0.007 10 -8 0.625 0.01 10— 4 0.001
BBB Y 0.014 10 -5 0.013 0.007 10 —2 0.000 0.005 10 -3 0.000
BBB- Y 0.001 10 -3 0.000 0 10-5 0.013 0 8—5 0.084
BB+ Y 0.001 10 -3 0.000 0.001 10-5 0.013 0 4—4 1.000
BB Y 0.009 10 — 4 0.001 0.002 10—-6 0.081 0 4 -3 0.239
BB- Y 0.013 10 -3 0.000 0.006 10 -3 0.000 0 4—4 1.000
B+ Y 0.005 10 —2 0.000 0.004 10-5 0.013 0 6—3 0.011
B Y 0.001 10 -3 0.000 0.001 10 — 4 0.001 0 5—-3 0.051
B- Y 0 10 — 4 0.001 0 8—-3 0.001 0 0—-0 —
ccC+ Y 0.001 10 -3 0.000 0 8—6 0.340 0 4—-3 0.239
ccce Y 0 10 -5 0.013 0 2—-1 0.043 0 2-—-2 1.000
The Upgrade Migrations

AA+ N 0 0—-0 — 0 0—-0 — 0 0—-0 —
AA N 0 1-1 1.000 0 1-1 1.000 0 0—-0 —
AA- N 0 5—4 0.372 0 0—-0 — 0 1-1 1.000
A+ N 0 5—4 0.372 0 8—4 0.011 0 4 -2 0.016
A Y 0.273 10-5 0.013 0.508 10—-6 0.081 0 5—-3 0.051
A- Y 3.649 10 — 4 0.001 2.261 10-5 0.013 2.516 10 — 4 0.001
BBB+ Y 0.543 10 -6 0.081 0.396 10 -6 0.081 0 7—5 0.214
BBB Y 0.326 10—-7 0.285 0.226 10—-6 0.081 0.168 10 -6 0.081
BBB- Y 0.72 10 — 4 0.001 0.539 10-—-7 0.285 0.925 10 -6 0.081
BB+ Y 4.516 10 -6 0.081 2.422 10—-7 0.285 3.167 10—-5 0.013
BB Y 1.929 10 -5 0.013 0 5—-3 0.051 0 5—4 0.372
BB- Y 11.719 10 -3 0.000 0 7T—4 0.035 0 6—3 0.011
B+ Y 3.162 10-—-7 0.285 0 5—4 0.372 0 5—-3 0.051
B Y 1.512 10 -6 0.081 0 8—5 0.084 0 0—-0 -
B- Y 8.48 10—-7 0.285 0 5—4 0.372 0 4-3 0.239
CCC+ Y 3.572 10 -6 0.081 0 4—4 1.000 0 2—-1 0.043
cccC Y 2.402 10 -6 0.081 0 2-—-2 1.000 0 0—-0 -

The baseline downgrade intensity from AA- for the financial sector provides an example
where the rejection of constancy is tempting for categories that do not qualify for inference.
Despite only downgrades in nine of the twenty half-years, these half-years are clumped
together and usually contain multiple downgrades—cyclicality is probably present. Re-
gardless, we maintain our conservatism in conducting inference because these statistics
could be a product of low populations if additional investigation was unavailable.

Upgrades in the industrial et al. sector demonstrate statistically significant clumping of
positive deviations for credit ratings A, A-, BBB-, BB and BB-. Upgrades from A- in
the financial sector and from A- and BB+ in the utilities sector reject constancy as well.
Despite few rejections, many of the qualifying p-values are less than ten percent (g < 6).
Overall, clumping is evident in some credit ratings, but the degree of clumping is far
less significant than in the downgrade intensities. Moreover, half of the investment grade
credit ratings for all industry sectors and most of the speculative grade credit ratings for
financial and utilities sector forbid inference due to inaccurate relative risk functions or
few upgrades.
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Figure 6: Smoothed Nelson-Aalen Default Intensity Estimates for each industry
sector, rating grade and migration direction from 1 January 1999 to 31 December 2004.
The industrial et al. sector is blue, the financial sector is red and the utilities sector is
green. Optimal bandwidths: (100,160,100).
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5.2. smoothed estimates of the market-reaction baseline intensities

Smoothed estimates of the baseline intensities conclude the analysis. In this section, the
baseline intensity estimates represent cyclical financial and business risks, risks common to
all issuers in an industry sector and changes in Standard & Poor’s policy. Baseline intensi-
ties should not reflect persistent changes in an issuer’s financial and business risks. Under
rating through the cycle, we expect the smoothed intensities estimates to be approximately
constant.

Firstly, however, we propose a proxy for systemic risks present over the sample period:
figure 6 shows smoothed Nelson-Aalen estimates (Andersen et al., 1993, section 4.1) of the
default intensities for each industry sector regardless of credit rating. If Standard & Poor’s
base a rating assessment on long-term default intensities, fluctuations of these defaults
intensities should not be indicative of credit rating migrations. We expect speculative
grade issuers to be more reactive to heightened short-term default risks because they may
not be long-term prospects, but investment grade issuers should be unmoved by short-term
systemic risk fluctuations under a policy of rating through the cycle.

We adopt the aggregation technique of section 4.2, where we compile the Breslow estimates
of all industry-stratified baseline intensities in a rating grade for an accurate picture of
the behaviour of the these intensities. Recall, this aggregation reduces the graphics to
representing the shape of the baseline intensities, fluctuating when common risks change.
We do not find estimates of the magnitudes of the baseline intensities, since the average
baseline intensity is different between credit ratings in the same rating grade. Also similar
to section 4.2, the relative risk function must be a statistically significant improvement
on a population-homogeneous model to qualify for inclusion in the aggregated smoothed
estimate. For this reason, we exclude credit ratings AA+ and AA- from downgrade intensi-
ties and AA+ to A+ from upgrade intensities. The bandwidths of the smoothed estimates
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Figure 7: Smoothed Baseline Downgrade Intensity Estimates for the Market-
Reaction Model for each industry sector and rating grade from 1 January 1999 to
31 December 2004. The industrial et al. sector is blue, the financial sector is red and the
utilities sector is green. Optimal bandwidths: investment grade (160,320,390); speculative
grade (140,630,700).
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are determined by minimising equation 9 to the nearest ten calendar days (subject to a
minimum of 100 and a maximum of 700).

Figure 7 contains the smoothed estimates for downgrades from the investment and spec-
ulative grades between 1 January 1999 and 31 December 2004 . Confidence bands reflect
the uncertainty, giving a range of ninety-five percent confidence around the smoothed es-
timates. These bands capture the variation in the Breslow estimate and the subsequent
kernel estimates, although they assume that 3;4 = Bid-

To appreciate the effects of bandwidth choice, notice the difference between the industrial
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et al. and financial sectors in the investment grade credit ratings, where the former has
half the bandwidth of the latter (160 versus 320 calendar days). Fluctuations are more
pronounced in the industrial et al. sector baseline intensity estimates whereas the financial
sector is tame. Furthermore, the financial sector has a bandwidth of 630 calendar days in
the speculative grade, with the smoothed estimate barely distinguishable from a linear es-
timate. We must balance the economic significance found with small bandwidths with the
statistical significance found with large bandwidths. (We see that a third consideration—
bias—is at play in the later upgrade intensities, where bandwidth optimisation imposes
small bandwidths on sparse data to avoid bias in the smoothed estimate.)

The confidence bands for baseline downgrade intensities in the financial and utilities sectors
are relatively wider in comparison to the industrial et al. sector than is the case with the
demography-controlled model. Financial issuers contribute less to the experiments in
the market-reaction model because public listing is rarer. Despite these wider confidence
bands, constancy of the baseline intensities appears dubious in all industry sectors from the
investment grade, and in the industrial et al. and financial sectors from the speculative
grade. In addition, industry heterogeneity is again evident, with the behaviour of the
smoothed estimates of different industries divergent on multiple occasions.

The common risks for industrial et al. issuers fluctuate over the sample period in both
investment grade and speculative grade credit ratings. Fluctuations appear at similar lo-
cations to the demography-controlled model, although the market-driven covariates absorb
the degree of some of the peaks. The baseline downgrade intensities rise in mid-1999 and
over the period from mid-2001 to mid-2002—similar to the default intensity of figure 6.
Unlike the default intensity, however, industrial et al. issuers suffer heightened baseline
downgrade intensities from early 2003.

As mentioned, inference on financial issuers’ baseline intensities is difficult because of
smaller sample sizes. The baseline downgrade intensity increases over the sample period
in both investment and speculative grade credit ratings. The heightened default risk
follows shortly after the jump in common risks in mid-2002 for investment grade issuers.
We remain weary, however, since this jump in baseline downgrade intensity persists for the
remainder of the period, possibly indicting a Standard & Poor’s policy change regarding
investment grade financial issuers (although Amato and Furfine (2004) conclude that rating
policy is constant over time).

We make no conclusion for speculative grade utilities issuers, and only passing comment on
the investment grade utilities issuers—baseline intensities are not constant. Small samples
make describing the behaviour of these issuers prone to errors, and the low default rates
make the smooth Nelson-Aalen estimates uninformative. In fact, so few downgrades occur
from utilities that we are unable to define the smoothed estimate prior to 2001.

Figure 8 shows the baseline upgrade intensities from the investment and speculative grades.
The number of upgrades after introducing market-driven covariates makes inference on the
baseline upgrade intensity for financial and utilities issuers impossible—we cannot reject
a constant baseline intensity in these industry sectors for either rating grade. To support
this, we can fit a horizontal line through each of these estimates without intercepting a
confidence band.
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Figure 8: Smoothed Baseline Upgrade Intensity Estimates for the Market-
Reaction Model for each industry sector and rating grade from 1 January 1999 to
31 December 2004. The industrial et al. sector is blue, the financial sector is red and the
utilities sector is green. Optimal bandwidths: investment grade (100,100,280); speculative

grade (100,110,120).
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The industrial et al. issuers’ baseline upgrade intensity allows a more considered analysis.
Both investment grade and speculative grade credit ratings experience a peak in upgrade
intensities in early 2000, and a trough in upgrade intensities from late 2001 to early 2003.
From 2004, however, investment grade issuers experience variable common risks, whereas
speculative grade issuers remain relatively stable.

Data sparsity limits comparisons of the downgrade intensities and upgrade intensities in
the financial and utilities sectors. The downgrade intensities for financial issuers appear
to trend upwards over the period, whereas the upgrade intensities do not trend in either
direction. The ebb in downgrade intensities in 2000 appears to correspond to the peak
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in upgrade intensities, although both baseline intensities are heightened in 2003. There
is very little visual evidence to support the intuition that baseline upgrade intensities
fluctuations negatively correlate to baseline downgrade intensities.

Overall, there is a strong argument that issuers in the industrial et al. sector experience
cyclicality in their baseline migration intensities—for both downgrades and upgrades. Non-
constancy of the baseline downgrade intensities has implications for the management of a
portfolio of corporate bonds. Under a regime where the credit rating matters, an increase
in the baseline downgrade intensities could cause the portfolio to fall below minimum
quality requirements. Issuers in the same stratum share non-constant baseline intensities
and thus issuers in a portfolio have correlation in credit rating migrations.

These concerns are particularly pertinent for banks and other institutions under the Basel
IT Capital Accord. Firstly, Basel II imposes capital provisions for credit risks, with the risk
weightings for calculating minimum capital provisions increasing with debt riskiness (for
example, a 20% risk weight for corporate debt rated between AAA and AA-, but a 150%
risk weight for corporate debt with credit ratings below BB- (Basel, 2004, paragraph 66)).
This compounds the potential expense of systemic risks, where a credit rating downgrade
may cause a price drop (devaluing assets) as well as a need to expand capital provisions,
since the risk weightings for calculating minimum capital provisions may increase. Sec-
ondly, banks can reduce their exposure to counterparty risks in calculating the provisions
by accounting for collateral. The definition of eligible collateral, however, permits cor-
porate debt of investment grade and not speculative grade (Basel, 2004, paragraph 145).
Again, systemic risks of credit rating downgrades complicate the banks ability to fore-
cast the eligibility of collateral. Furthermore, eligible collateral must not be “materially
positively correlated” with the counterparty risk (Basel, 2004, paragraph 124), which is
doubtful if strong systemic risks govern both capital requirements and collateral eligibility.

6. further research

The focus of this paper is on rating through the cycle, and although we examine cyclicality,
we do not attempt to explain its causes. A regression of the baseline intensity may provide
insight into the causes of cyclicality. Particularly, introducing indicators for industry
business cycles and macroeconomic effects could deliver a better understanding of the
baseline intensity and provide a means for forecasting migration intensities. Koopman
and Lucas (2005) achieve this in modelling default rates, contending that business cycles
and default rates are co-cyclical, which encourages investigations into whether this co-
cyclicality extends to credit rating migration intensities. Although they also focus on
default, Stefanescu et al.’s (2006) use Markov Chain Monte Carlo techniques to fit issuer-
specific and macroeconomic covariates to examine systemic risks could prove fruitful in
forecasting baseline intensities.

Under a strong assumption of cyclicality, where cycles are of predictable length and mag-
nitude, we may use a combination of trigometric functions for modelling the baseline
intensity. Although not as flexible as using common effect regressors that allow cycles of
undefined length and magnitude, this approach may be favourable if we cannot rely on
macroeconomic forecast data or we need the baseline intensity process to be perfectly pre-
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dictable. This methods requires long periods of data for calibration—as found by Koopman
et al. (2005) when using this approach in modelling default rates—which may be difficult
if the merging of databases is needed. Regardless, fitting trigometric functions to the base-
line intensities may provide a superior assumption to constant baseline intensities where we
consider only the rating processes themselves—such as the demography-controlled model.

Given baseline intensity forecasts for all competing risks, it is possible to build a survival
model. That is, one could find the probability of remaining in the same credit rating,
defaulting, or remaining in a group of credit ratings (such as the investment grade credit
ratings) over defined periods. This allows management of assets to assign probabilities of
meeting debt quality targets. Furthermore, if rating through the cycle is fictional, banks
need to establish correlated probabilities of breaching minimum credit quality to forecast
compliance with Basel II.

7. conclusion

Standard & Poor’s policy of rating through the cycle is an aspiration rather than a reali-
sation. This has implications for asset management, where systemic risks can change the
migration intensities of all issuers in a stratum. That is, the correlation between issuers’
credit ratings complicates the probability of maintaining credit quality or survival targets
of a debt portfolio into the future. Principally, Standard & Poor’s unmet aspiration has
serious reverberations for banks and their compliance with Basel 11, since capital provisions
and collateral eligibility are dependent on strict credit quality standards.

We adapt the runs test to the baseline component of the Evans’ (2007) directional mul-
tiplicative intensity model. Subsequent increments of baseline intensity should be inde-
pendent under baseline intensity constancy, which rating through the cycle implies. We
are able to demonstrate that clumping occurs in all but the least populated credit rat-
ings, meaning cyclicality of undefined length and size is present and we can reject baseline
intensity constancy.

Initially, we apply a demography-controlled model, where momentum and excitability are
fit to test non-constancy beyond these effects. We reject constancy in most credit ratings
using the runs test and observe cyclicality in the baseline downgrade intensities using
kernel estimates. While these results provide awareness of baseline intensity behaviour
after controlling for demographic effects (the entry direction into a credit rating and the
time spent in a credit rating), they fail to repudiate rating through the cycle policy because
Standard & Poor’s consider an issuer’s non-cyclical financial and business risks. Moreover,
smoothed baseline intensity estimates support previous evidence on the need for industry
stratification.

We propose that an equity market’s relative reaction to a change in an issuer’s risks affords
the best proxy to Standard & Poor’s measure of a change in an issuer’s persistent financial
and business risks. Thus, we apply a market-reaction model, where excess return, volatility
and relative market capitalisation are fit to test baseline intensity non-constancy and rating
through the cycle policy. The most populous credit ratings and industry sectors reject
baseline intensity constancy, finding statistically significant non-constancy in most baseline
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downgrade intensities from the industrial et al. and financial sectors. While cyclicality
is present in baseline upgrade intensities as well, the results are both statistically and
economically less convincing. Unfortunately, imprecise data merging techniques between
the debt and equity databases diminishes the upgrades samples of financial and utilities
issuers. Thus, inference on baseline intensities in the utilities sector using the runs test is
minimal, and the upgrade baseline intensity estimates in the financial and utilities sectors
remain unconvincing.

The directional multiplicative intensity model offers a flexible and impressive system for
analysing migration intensities common to all issuers, where we model the baseline inten-
sity after controlling for issuer-specific risks. While this paper dealt exclusively with the
policy of rating through the cycle, this model provides scope for extensions into the causes
and consequences of baseline intensity cyclicality. Furthermore, we implore researchers
with access to precise debt and equity merging data to refine the pictorial evidence of
cyclicality.
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Appendices

A. data information

A.1. source data

FISD
Field Use in Analysis Notes

Issuer Data

issuer-id identification

issuer_cusip merging sets The primary identifier for merging databases
industry_group industry identification Industrial, financial, utilities, government, miscellaneous
industry_code industry idenitification Used to filter banks from financials

country_domicile  merging sets Used to corroborate merging link

Static Issue Data

issue_id identification

maturity right-censoring times Used for attaining issuer-specific ratings
rating_type rating agency Use only Standard & Poor’s ratings
Dynamic Issue Data

rating credit rating see appendix B

rating_date credit rating migration dates

CRSP

Field Use in Analysis Notes

Static Data

npermno identification

cusip merging sets The primary identifier for merging databases
linkdt merging sets Used to find where merging links correspond
linkenddt merging sets Used to find where merging links correspond
linktype merging sets Used to find where merging links correspond

Dynamic Data

sasdate date

prc size

ret return and volatility
shrout size

shrsdt size

shrenddt size

Indices Data

caldt date
vwretd return and volatility
totval size
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A.2. data summary

Standard & Poor’s credit rating summary statistics between 1 January 1997 and 31 Decem-
ber 2006 for each credit rating and industry sector. Demography-Controlled and Market-
Reaction columns display the percent of downgrades and upgrade eligible for each model.

Total Migrations Demography-Controlled Market-Reaction
Rating Industry Issuers Exposure Downgrades Upgrades Downgrades Upgrades Downgrades Upgrades
AAA Industrial 73 386 41 0 10% - 22% -
Financial 83 326 51 0 22% - 2% -
Utilities 6 36 4 0 50% - 25% -
AA+ Industrial 27 150 30 15 37% 53% 13% 0%
Financial 23 92 38 2 34% 50% 8% 0%
Utilities 1 14 7 0 29% - 43% -
AA Industrial 46 299 87 19 53% 42% 33% 5%
Financial 71 231 67 8 51% 38% 10% 13%
Utilities 6 48 16 0 25% - 38% -
AA- Industrial 66 409 116 34 58% 59% 31% 15%
Financial 103 450 131 23 40% 57% 12% 0%
Utilities 17 185 55 4 53% 50% 35% 75%
A+ Industrial 127 701 192 31 63% 39% 31% 19%
Financial 166 816 169 97 54% 63% 15% 13%
Utilities 36 234 67 20 57% 55% 33% 30%
A Industrial 148 994 234 80 55% 49% 40% 34%
Financial 231 1170 187 180 51% 57% 11% 14%
Utilities 43 324 90 23 61% 39% 31% 26%
A- Industrial 170 867 259 93 1% 59% 46% 42%
Financial 216 1108 145 209 48% 50% 20% 11%
Utilities 62 479 131 35 52% 60% 24% 37%
BBB+ Industrial 224 1119 300 124 66% 70% 43% 38%
Financial 217 968 159 186 58% 51% 16% 13%
Utilities 94 412 136 40 62% 55% 17% 35%
BBB Industrial 257 1499 325 204 68% 55% 45% 39%
Financial 158 831 127 141 57% 44% 17% 17%
Utilities 106 458 110 53 65% 45% 19% 21%
BBB- Industrial 176 1174 314 217 70% 67% 43% 34%
Financial 145 697 118 137 53% 40% 15% 22%
Utilities 86 408 117 53 60% 62% 12% 32%
BB+ Industrial 164 802 226 186 81% 67% 43% 44%
Financial 59 321 67 83 67% 52% 30% 22%
Utilities 29 160 40 45 75% 82% 13% 33%
BB+ Industrial 118 623 201 124 75% 62% 40% 39%
Financial 54 180 64 59 81% 59% 23% 12%
Utilities 18 90 45 24 73% 79% 13% 29%
BB- Industrial 193 902 289 170 61% 58% 38% 40%
Financial 41 162 64 46 7% 52% 28% 20%
Utilities 16 98 31 23 7% 78% 16% 35%
B+ Industrial 298 1511 422 214 55% 58% 38% 33%
Financial 58 226 71 52 68% 56% 30% 13%
Utilities 25 78 31 27 55% 67% 26% 22%
B Industrial 427 2046 595 286 48% 40% 35% 41%
Financial 37 150 66 46 76% 52% 39% 22%
Utilities 29 55 31 22 87% 86% 23% 0%
B- Industrial 500 2384 742 317 50% 38% 28% 34%
Financial 39 169 52 30 71% 53% 25% 17%
Utilities 16 39 12 26 83% 81% 0% 27%
CCC+ Industrial 262 769 478 111 87% 59% 30% 40%
Financial 15 55 38 11 92% 73% 29% 36%
Utilities 7 33 15 14 100% 86% 27% 21%
cccC Industrial 176 384 321 80 92% 78% 31% 35%
Financial 14 33 28 9 96% 89% 11% 22%
Utilities 7 14 20 3 100% 100% 10% 0%
CCC- Industrial 548 348 451 61 100% 92% 23% 28%
Financial 60 49 54 6 96% 100% 13% 50%
Utilities 27 21 20 11 100% 100% 10% 18%
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B. rating definitions

Rating Desciption

AAA extremely strong capacity to meet its financial commitments

AA very strong capacity to meet its financial commitments

A strong capacity to meet its financial commitments but is somewhat more
susceptible to the adverse effects of changes in circumstances and economic
conditions than obligors in higher-rated categories

BBB adequate capacity to meet its financial commitments. However, adverse
economic conditions or changing circumstances are more likely to lead to a
weakened capacity of the obligor to meet its financial commitments.

BB faces major ongoing uncertainties and exposure to adverse business, financial, or
economic conditions which could lead to the obligor’s inadequate capacity to
meet its financial commitments.

B currently has the capacity to meet its financial commitments. Adverse business,
financial, or economic conditions will likely impair the obligor’s capacity or
willingness to meet its financial commitments.

CCC currently vulnerable, and is dependent upon favorable business, financial, and
economic conditions to meet its financial commitments.

cC currently highly vulnerable.

D, SD default

NR An issuer designated NR is not rated.

RS regulatory supervision

source: www.standardandpoors.com
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C. coefficient estimates

C.1. partial likelihood estimation

We express the partial likelihood function for the full migration intensity, dA;; k¢, as

ANia,ke(s)
Yiue(s) exp {81, Xx(8)} |
Bzd HHH ( }/zkﬁ )eXp {ﬂ;ka(t)}) ’

k t>0

where the time-related product (J],.,) is a product integral (Andersen et al., 1993). For
estimation, we take the natural logarithm,

H(Bia) = ZZ/ (zke BiaXx(t) — log (Zszé ﬁgdka))dmd,k@(s). (11)

To estimate 3;4, we find the score vector and information matrix by differentiating equa-
tion 11 once and twice respectively,

U(Bia,t) = (Z/ X (5)dNape(s /5 Bid s) dNa (s )) and
T (Bia,t) = _zg:/o V (Bia, ) dNia,.o(5),

where,

S X Yiels) esp B X))
EPut) = S e (ALK )]

1) X (1) P2V e (s) exp {ﬁ’ s}

Vv idy = m - & idy ®2, d
(Biast) Zk Yial(s) oxp {BLXn(0)] (Bid, 1) an

Nid’.[(t) = ZNid,kf(t)

The estimate for B;q, ,éid, is found by evaluating the score vector at zero, U(B;q, 7) = 0.
The standard error and covariance associated with ,C:}id are approximated by the inverse of
the observed information matrix, which we use for estimating the statistical significance
of the coefficient estimates (Therneau and Grambsch, 2000, chap. 3).

In addition, we measure the performance of a model overall by considering Model Fit
statistics. We calculate Model Fit statistics as —2 xl(Bid), and we use these for comparisons
between models fit on the same sample (smaller Model Fits statistics are preferable).
Specifically, the Model Fit statistic for the time-varying Markovian model (the null model)
is —2 x 1(0), and the difference in these Model Fit statistics (2(I(Biq) — 1(0)), under a null
hypothesis of B;4 = 0, follows a y?-distributed with degrees of freedom equal to the number
of elements in X;. We demonstrate the improvement of the directional multiplicative
intensity model over the time-varying Markovian model by citing these Model Fit statistics.
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C.2. demography-controlled relative risk functions

Industry-Stratified Directional Migration Models with Momentum and Excitability Co-
variates. Coefficient estimates, B, are accompanied by asterisks representing statistical
significance: * is ninety percen
The Model Fit statistics (—2xlog-likelihood) are accompanied by asterisks representing

kk
t,

the improvement over the null model.

is ninety-five percent, an

d kkk

Rating (i)  #From  #To  gmementum  gezcite Model Fit
The Downgrade Migrations

AA+ 41 26 0.794 —0.568 54%*
AA 129 84 0.617** —0.213** 320™***
AA- 239 148 0.564*** 0.535*** T46%**
A+ 402 249 0.261* —0.167*** 1560***
A 513 280 0.640*** —0.198*** 1932***
A- 573 321 0.802%** —0.127** 2229%**
BBB+ 655 373 1.000*** —0.124** 2612%**
BBB 676 364 0.614*** —0.313%** 2692%**
BBB- 658 353 0.783*** —0.343*** 2409***
BB+ 519 258 1.386%** —0.302%** 1607***
BB 403 236 0.823*** —0.442%** 1251%**
BB- 459 244 0.621%** —0.357*** 1492***
B+ 562 295 0.827*** —0.367*** 2003***
B 625 347 0.896*** —0.294*** 2430***
B- 692 401 0.637*** —0.288*** 3019***
CCC+ 622 398 0.415* —0.298*** 2885%**
ccc 459 286 0.482 —0.275%** 1707***
The Upgrade Migrations

AA+ 41 9 18.053 —0.062 19**
AA 129 11 2.025%* —0.291 44**
AA- 239 35 0.599 0.156 179

A+ 402 84 0.412* —0.274%** 499***
A 513 150 0.355* 0.280** 1034***
A- 573 180 0.282* 0.045 1168
BBB+ 655 203 0.482%** —0.085 1373%**
BBB 676 199 0.417%** —0.021 1454**
BBB- 658 233 0.594*** 0.048 1617***
BB+ 519 204 0.414*** 0.019 1269**
BB 403 131 0.567*** —0.134 642%**
BB- 459 141 0.765*** —0.021 866%**
B+ 562 172 0.199 0.109 1164

B 625 158 0.409** 0.101 1035**
B- 692 157 0.907*** 0.101 1108***
CCC+ 622 86 1.018*** 0.195 556%*
ccc 459 73 1.148%** 0.432 425**
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C.3. market-reaction relative risk functions

Industry-Stratified Directional Migration Models with Return, Volatility and Size Co-
variates. Coefficient estimates, B, are accompanied by asterisks representing statistical
significance: * is ninety percent, ** is ninety-five percent, and *** is ninety-nine percent.
The Model Fit statistics (—2xlog-likelihood) are accompanied by asterisks representing
the improvement over the null model.

Rating (i) #From # To BAZ-TE“”" Bpomti“ty 3;52" Model Fit

id

The Downgrade Migrations

AA+ 10 10 —34.595 274.642 1.890 6*

AA 51 42 0.961 48.507 —0.298%** 158***
AA- 93 71 —0.030 31.625** —0.079 329*
A+ 156 108 —1.332% 76.435%** —0.062 555 **
A 242 143 —1.525** 39.464%** —0.186*** 903***
A- 284 180 —0.950** 19.582%** —0.227%** 1183***
BBB+ 298 178 —1.864*** 36.362%** —0.157%** 1165***
BBB 346 187 —2.300%** 30.404*** —0.135%** 1324%**
BBB- 326 166 —1.146%** 59.055%** —0.296%** 1054***
BB+ 263 122 —1.917%** 35.389%** —0.356%** TO1***
BB 185 102 —1.738%** 40.203*** —0.153* 498%**
BB- 257 133 —1.160%** 32.924*** —0.114* 785***
B+ 332 187 —1.091%** 36.221%** —0.167*** 1278***
B 421 233 —1.741%** 32.166*** —0.329%** 1571%**
B- 395 216 —1.521%** 37.702%** —0.371%** 1444***
CCC+ 232 146 —1.574%** 43.733%** —0.281%** 733%**
cce 147 94 —1.743%** 42.990*** —0.464%** 396***

The Upgrade Migrations

AA+ 10 0 — - — —

AA 51 2 4.376 —59.908 0.701 6

AA- 93 8 —1.922 49.712 0.969** 31*
A+ 156 25 0.334 5.478 0.291 117

A 242 59 —0.105 16.261 0.383*** 369%**
A- 284 74 1.361 —24.397 0.489*** 451%**
BBB+ 298 86 0.262 —32.057 0.250*** 529%**
BBB 346 114 2.223%** 7.216 0.224%** 815%**
BBB- 326 120 0.861 —12.417 0.259*** 805***
BB+ 263 115 1.551** —47.063%** 0.308%** 662%**
BB 185 61 0.845 —21.889 0.275%* 304**
BB- 257 85 1.223* —80.372%** 0.314%*** 474%**
B+ 332 83 0.420 —22.932* 0.356*** 590%**
B 421 127 1.681%** —27.421%** 0.218*** 991%**
B- 395 118 1.306*** —29.279%** 0.363*** 829%**
CCC+ 232 49 0.836 —8.359 0.336*** 255%**
cce 147 30 1.527** —23.301 0.185 124%**
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